Carbon and Sulfur Cycling below the Chemocline in a Meromictic Lake and the Identification of a Novel Taxonomic Lineage in the FCB Superphylum, Candidatus Aegiribacteria
نویسندگان
چکیده
Mahoney Lake in British Columbia is an extreme meromictic system with unusually high levels of sulfate and sulfide present in the water column. As is common in strongly stratified lakes, Mahoney Lake hosts a dense, sulfide-oxidizing phototrophic microbial community where light reaches the chemocline. Below this "plate," the euxinic hypolimnion is anoxic, eutrophic, saline, and rich in sulfide, polysulfides, elemental sulfur, and other sulfur intermediates. While much is known regarding microbial communities in sunlit portions of euxinic systems, the composition and genetic potential of organisms living at aphotic depths have rarely been studied. Metagenomic sequencing of samples from the hypolimnion and the underlying sediments of Mahoney Lake indicate that multiple taxa contribute to sulfate reduction below the chemocline and that the hypolimnion and sediments each support distinct populations of sulfate reducing bacteria (SRB) that differ from the SRB populations observed in the chemocline. After assembling and binning the metagenomic datasets, we recovered near-complete genomes of dominant populations including two Deltaproteobacteria. One of the deltaproteobacterial genomes encoded a 16S rRNA sequence that was most closely related to the sulfur-disproportionating genus Dissulfuribacter and the other encoded a 16S rRNA sequence that was most closely related to the fatty acid- and aromatic acid-degrading genus Syntrophus. We also recovered two near-complete genomes of Firmicutes species. Analysis of concatenated ribosomal protein trees suggests these genomes are most closely related to extremely alkaliphilic genera Alkaliphilus and Dethiobacter. Our metagenomic data indicate that these Firmicutes contribute to carbon cycling below the chemocline. Lastly, we recovered a nearly complete genome from the sediment metagenome which represents a new genus within the FCB (Fibrobacteres, Chlorobi, Bacteroidetes) superphylum. Consistent with the geochemical data, we found little or no evidence for organisms capable of sulfide oxidation in the aphotic zone below the chemocline. Instead, comparison of functional genes below the chemocline are consistent with recovery of multiple populations capable of reducing oxidized sulfur. Our data support previous observations that at least some of the sulfide necessary to support the dense population of phototrophs in the chemocline is supplied from sulfate reduction in the hypolimnion and sediments. These studies provide key insights regarding the taxonomic and functional diversity within a euxinic environment and highlight the complexity of biogeochemical carbon and sulfur cycling necessary to maintain euxinia.
منابع مشابه
Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake
Precambrian Banded Iron Formation (BIF) deposition was conventionally attributed to the precipitation of iron-oxides resulting from the abiotic reaction of ferrous iron (Fe(II)) with photosynthetically produced oxygen. Earliest traces of oxygen date from 2.7 Ga, thus raising questions as to what may have caused BIF precipitation before oxygenic photosynthesis evolved. The discovery of anoxygeni...
متن کاملCarotenoid biomarkers as an imperfect reflection of the anoxygenic phototrophic community in meromictic Fayetteville Green Lake.
Organic biomarkers in marine sedimentary rocks hold important clues about the early history of Earth's surface environment. The chemical relicts of carotenoids from anoxygenic sulfur bacteria are of particular interest to geoscientists because of their potential to signal episodes of marine photic-zone euxinia such as those proposed for extended periods in the Proterozoic as well as brief inter...
متن کاملIn situ analysis of phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno (Switzerland).
Comparative sequence analysis of a 16S rRNA gene clone library from the chemocline of the meromictic Lake Cadagno (Switzerland) revealed the presence of a diverse number of phototrophic sulfur bacteria. Sequences resembled those of rRNA of type strains Chromatium okenii DSM169 and Amoebobacter purpureus DSM4197, as well as those of four bacteria forming a tight cluster with A. purpureus DSM4197...
متن کاملVertical distribution of major sulfate-reducing bacteria in a shallow eutrophic meromictic lake.
The vertical distribution of sulfate-reducing bacteria was investigated in a shallow, eutrophic, meromictic lake, Lake Harutori, located in a residential area of Kushiro, Japan. A steep chemocline, characterized by gradients of oxygen, sulfide and salinity, was found at a depth of 3.5-4.0 m. The sulfide concentration at the bottom of the lake was high (up to a concentration of 10.7 mM). Clone l...
متن کاملDynamic cellular complexity of anoxygenic phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno
The meromictic Lake Cadagno is characterized by a compact chemocline with high concentrations of anoxygenic phototrophic purple sulfur bacteria (PSB) and green sulfur bacteria (GSB). The co-occurrence of phylogenetically distant bacterial groups such as PSB and GSB in the same ecological niche, makes the chemocline of Lake Cadagno an ideal system for studying the conditions and consequences of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Frontiers in microbiology
دوره 7 شماره
صفحات -
تاریخ انتشار 2016